Доклады Академии наук СССР 1979. Том 249, № 4

УДК 546.26:549.221:539.183.2:548.555 + 548.75 + 548.735

МИНЕРАЛОГИЯ

Э.М. ГАЛИМОВ, Ю.А. КЛЮЕВ, И.Н. ИВАНОВСКАЯ, В.В. ГРИЦИК, В.И. НЕПША, В.И. СМИРНОВ, Н.И. ЕПИШИНА, С.П. ПЛОТНИКОВА, В.И. КОПТИЛЬ

КОРРЕЛЯЦИЯ ИЗОТОПНОГО СОСТАВА УГЛЕРОДА, МОРФОЛОГИИ И СТРУКТУРНЫХ ОСОБЕННОСТЕЙ МОНОКРИСТАЛЛИЧЕСКИХ АЛМАЗОВ ИЗ НЕКОТОРЫХ РОССЫПЕЙ ЯКУТИИ

(Представлено академиком Н.В. Беловым 25 VI 1979)

В работе впервые сопоставлены результаты анализа изотопного состава углерода алмазов с особенностями их реальной кристаллической структуры. Поскольку изотопный анализ углерода алмаза дает непосредственную информацию об исходных формах углерода (¹), а присутствие в кристаллической решетке алмаза определенных структурных дефектов — о термодинамических условиях генезиса (²), то полученные данные интересны с точки зрения новых сведений о механизме образования и последующей эволюции природных алмазов и помогут в разработке новых поисковых критериев алмазов.

Относительное содержание изотопов углерода в величинах $\delta^{13}C$ измерялось с точностью $\pm 0,1$ ‰.

Исследование особенностей кристаллической структуры алмазов из россыпей Якутии проводилось методами спектроскопии поглощения в инфракрасном и радиочастотном диапазонах, а также фотолюминесценции. Для сравнения исследовались 5 кристаллов из кимберлитовых трубок этого региона.

Наиболее характерными нарушениями кристаллической структуры алмазов являются примесные оптически-активные дефекты, получившие обозначения *A* -, *B* 1-, *C* - и *B* 2-центров. Эти центры проявляются в и.-к. спектрах алмазов системами полос поглощения с главными максимумами 1282, 1175, 1135 и 1360 -1386 см⁻¹ соответственно.

По спектрам э.п.р. С-центр однозначно идентифицирован как атом азота, изоморфно замещающий углерод (³). В настоящее время относительно A-центра известно, что он представляет собой сложное сферическое образование ~40 Å (⁴) азотного происхождения (⁵). В2-центры являются пластинчатыми агрегациями с участием примесных атомов азота размерами от 200 до 10000 Å, образующимися в плоскости {100} алмаза и вызывающими характерное диффузное рассеяние рентгеновских лучей типа "шипов" (⁶,⁷). О строении B1-центра и вхождении в его структуру атома азота нет единого мнения. Рентгенодифракционными исследованиями показано, что это примесное образование также сферической формы размером ~80 Å (⁴).

Содержание оптически-активных центров оценивалось по интенсивности поглощения в максимуме главных полос, указанных выше. Методика измерения их приведена в (8). Точность спектральных измерений в зависимости от образца \pm 5-20%.

С помощью э.п.р. определялись концентрации парамагнитных дефектов: азотного Сцентра, структурных дефектов, обусловленных разорванными химическими

Таблица 1

№ образца	δ ¹³ C ‰,	Оптически-активные центры, см ⁻¹			Парамагнитные центры, 10 ¹⁵ спин/см ³	
		A	B_{I}	B_2	С	N +[]
1	- 6,5	36	5-6	4,7	-	-
2	- 6,2	55	11	2,7	—	—
3	- 8,4	4,1	9,4	8,0	_	_
4	- 8,2	50	6	2,2	800 (оболочка)	_
					60 (ядро)	
5	- 8,6	11	_	_	90	+
6	- 7,0	3,5	_	_	970	+
7	- 6,6	24	2	2	10	_
8 к	- 5,6	32	4	7,5	-	-
9к	- 5,2	12	7	3,6	-	—
10к	- 7,1			_	800 (оболочка)	-
					120 (ядро)	
11 к	- 6,5	9,0	5,0	4,5	-	_
12к	- 8,9				1800	
13	-15,2	0,7*	_	_	200	+
14	9,9.	1,3*	_	—	300	+
15	- 14,2	1,3*	_	_	52	+
16	-16,8				10000	+
17	-12,9	6,8*	_	_	1700	+
18	-23,6	53	10	2	-	_
19	-21,5	6,5	_	_	10	
20	-24,2	60	7	3,8	_	_
21	-22,2	37	_	_	50	_

П р и м е ч а н и я . Индексом "к" обозначены алмазы из кимберлитовых трубок. Звездочкой отмечены значения коэффициента поглощения образца на длине волны 7,8 мкм.

связями на границах микротрещин, блоков и др. (⁹), а также центра, образованного парой азот + вакансия (N + []) в соседних тетраэдрах элементарной ячейки алмаза

(¹⁰). В наиболее распространенных разновидностях природных монокристаллических алмазов концентрация С-центра не превосходит 10¹⁵ спин/см³, поэтому это значение как нижний предел наших измерений в табл. 1 обозначается прочерком.

Алмазы с неявно выраженной кристаллической формой, обломки, а также непрозрачные и окрашенные исследовались рентгенодифракционйыми методами, по лауэграммам определялись их блочность и следы пластической деформации, которой подвергались кристаллы.

Диапазон значений ¹³С ‰ исследованных образцов более широкий (от -5,2 до —24,2), чем это было установлено раньше для монокристаллических алмазов. По этому параметру алмазы подразделяются в соответствии с (¹¹) на 3 группы.

Для 12 образцов, составляющих первую группу, в которую входит 5 алмазов из кимберлитовых трубок (табл. 1, №№ 1-12), значение б¹³ С изменяется от —5,2 до —8,9 ‰. Среди них встречаются октаэдры и их сростки (№№ 1, 4, 8к), ромбододекаэдры (№№° 2, .3), окатанные и неопределенной формы кристаллы (№№ 7, 9к, 11к), кристаллы кубического габитуса (№№ 5, 6, 10к, 12к). По окраске алмазы делятся на бесцветные (№№ 1, 3), зеленоватые (№№ 2,4, 7), желтый (№ 10к), серые разной тональности (№№ 5, 8к, 9к, 11к, 12к) и коричневый эмалевидный (№ 6). Последние кристаллы полупрозрачны и непрозрачны. Почти все алмазы этой группы

Рис. 1. Инфракрасные спектры поглощения алмазов. Цифры на кривых соответствуют номеру кристалла в табл. 1.

содержат включения и пластически деформированы, углы разориентировки блоков от 1 до 5°. Все кристаллы имеют в разных соотношениях все оптически-активные центры (рис. 1 *a*) (Сцентр измерялся с помощью э.п.р. и учитывался при вычислении интенсивности полос *A u B 1*. Кристаллы №№ 1-3, 7 относятся к 1-й разновидности минералогической классификации алмазов Ю.Л. Орлова (¹²). Кристаллы комбинационной формы с проявлениями кубических граней №№ 5, 6, 10 и 12 содержат С-центр в повышенной концентрации (> 10¹⁵ см⁻³) и относятся ко 2-й разновидности. Кристалл № 4 имеет ядро и оболочку, на что указывает неравномерное распределение парамагнитного азота в объеме кристалла, и принадлежит к 4-й разновидности. Алмазы №№ 9 и 11 относятся к 5-й разновидности, а № 8 — к 8-й. Набор центров и особенности их распределения в кристаллах полностью соответствуют ранее опубликованным наблюдениям (¹³). Только кристаллы № 5 и № 6 дополнительно имеют центр N + [].

Интересно отметить, что алмаз № 6 по данным структурных исследований подвергался пластической деформации. В спектре кристалла (рис. *I a*) обнаружены полосы 1470—1425, 1002, 879 см⁻¹, относящиеся к внутренним колебаниям атомов в ионе (CO₃)²⁻, а усиление поглощения в области собственных колебаний решетки алмаза (3600—2800 см^{'1}) и полосы 1670—1527 см⁻¹ обусловлены поглощением групп ОН⁻. Те же самые примеси наблюдались в оболочке алмаза 4-й разновидности (¹⁴). 960 По особенностям морфологии и кристаллической структуры, которая проявляется в спектрах поглощения и фотолюминесценции, "тяжелые" алмазы из россыпей (№№ 1-7) тождественны алмазам из кимберлитовых трубок (№№ 8-12). Количественные различия в содержании центров в алмазах этой группы только отражают локальные вариации в условиях генезиса.

Вторая группа алмазов, промежуточная по составу изотопов углерода с δ¹³C от —12,9 до -16,8 %₀, включает 5 кристаллов (№№ 13—17), которые характеризуются наборами примесных и структурных центров, отличными от алмазов первой группы*.

Все без исключения кристаллы являются комбинационными многогранниками, содержащими плоские и округлые грани и окрашенными в желтый цвет, изменяющийся от светло-желтого до оранжево-желтого. Все кристаллы блочные, разориентировка блоков не более $1-2^{\circ}$. Для них характерно при сравнительно низком поглощении в однофононной части спектра алмаза наличие парамагнитных С- и N + []- центров, в и.-к. спектре, помимо известных полос С-центра (1345, 1280—85, 1135, 1100), наблюдаются дополнительные: 1332, 1275, 1240—25, 1175, 1045 и 925 см⁻¹ (рис. 16). Соответствующий структурный дефект в алмазе близок по проявлению к дефектам, наблюдающимся в синтетических алмазах, которые легировались азотом и бором при выращивании в условиях статических высоких давлений и температур. В некоторых кристаллах наблюдаются слабые неразрешенные полосы с максимумами 1360, 1395 и 1430 см⁻¹.

Данные образцы из-за небольшого содержания примесных центров имеют слабую фотолюминесценцию в виде широкой полосы с максимумом 520—560 нм, на которую накладывается характеристическое свечение центров N3, H3 и T1. Широкая полоса может быть вызвана рекомбинационными процессами на системе уровней в запрещенной зоне алмаза, обусловленной высокой плотностью дислокаций в кристаллах.

Последняя группа кристаллов с δ^{13} С от 21,5 до — 24,2‰ включает 4 кристалла (№№ 18-21) комбинационного октаэдрического и один кубического габитуса. Все образцы блочные, имеют темно-серую окраску, плохую прозрачность за счет включений графита и по минералогическим критериям относятся к 5-й разновидности. Углы разориентировки блоков изменяются от 1 до 5°. Отличие их от серых алмазов первой группы заключается в другом изотопном составе углерода (ср. с алмазом № 9). В спектрах этих алмазов, помимо обычных полос *A*-, *B*1- и *B*2- центров, наблюдались широкая неразрешенная полоса 1450 см^{*1} и система из трех отчетливых полос в области 1550—1500 см⁻¹ (рис. 1*б*). Последние находятся в области локальных колебаний алмазной решетки и природа их пока неизвестна. Во всех кристаллах фотолюминесценция не наблюдалась. В спектре образца № 19 дополнительно наблюдались слабые полосы (CO₃)²⁻.

Результаты исследования изотопного состава углерода и структурных дефектных центров алмазов из приведенной коллекции показали, что каждой из групп алмазов, выделенных по изотопному составу углерода, соответствуют определенные оптически-активные и парамагнитные центры. Это дает основание, учитывая выводы работы (²), предполагать, что особенности термодинамических условий образования алмазов коррелируют с особенностями изотопного состава углерода алмазов.

> Поступило 5 VII 1979

Институт геохимии и аналитической химии им. В.И. Вернадского Академии наук СССР, Москва Всесоюзный научно-исследовательский и конструкторскотехнологический институт Природных алмазов и инструмента, Москва

* Алмаз № 14 по величине δ¹³С является исключением в этой группе кристаллов, тем не менее он более; ''легкий'', чем алмазы первой группы.

ЛИТЕРАТУРА

- ¹ Э.М. Галимов, В сб.: Очерки современной геохимии и аналитической химии, М., "Hay ка", 1972.
- ² Ю.А. Клюев, Ю.А. Дуденков, В.И. Непша, Геохимия, №7, 1029 (1973)
- ³ W. V. Smith, P.P. Sorohin et al, Phys. Rev., v. 115, 1546 (1959).
- ⁴ А.М. Налетов, Ю.А. Клюев и *др.*, ФТТ, т. 19, 1529 (1977).

- ⁵ W. Kaiser, W.B. Bond, Phys. Rev., v. 115, 857 (1959)
 ⁶ T. Evans, C. Phaal, Proc. Roy. Soc. A, v. 270, 538 (1962).
 ⁷ Е.В. Соболев, В.И. Лисойван В.И. Ленская, ДАН, т. 175, 582 (1967).
- ⁸ Ю.А. Клюев, СП. Плотникова, В.И. Смирнов, Научн. реф. сб. Алмазы и сверхтвердые матер., № 5,1 (1979). ⁹ *Н.Д. Самсоненко, В.Г. Шудьга,* Ю.А. Литвин, Синтетич. алмазы, № 3, 22 (1970)
- ¹⁰ М.И. Самойлович, В.П. Бутузов и др. Научн. реф. сб. Алмазы, № 7, 1 (1972).
- ¹ Э.М. Галимов, Ф.В. Каминскии, И.Н. Ивановская, Геохимия, № 3, 340 (1978).
- ¹² Ю.Л. Орлов, Тр. Минерал, музея АН СССР, в. 16, 141 (1965).
- ¹³ Ю.А. Клюев, Ю.А. Дуденков и др., Научн. реф. сб.: Алмазы, № 6, 1 (1972). ¹⁴ *R.M. Chrenko, R.S. McDonald, R.A. Darrow*, Nature, v. 213, 474 (1967).