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Abstract—This paper presents С and H isotope compositions of compounds involved in methane 
production by pure cultures o f Methanobaeterium formicicum. The С isotope compositions of the methane 
produced and of the residual C 0 2 are compared to data observed in natural conditions in marine 
sediments. This comparison leads to further evidence that C 0 2 reduction is an important mechanism for 
microbial generation of methane in deep marine sediments. The H isotope compositions show involvment 
of the water hydrogen into methane as well as hydrogen exchange between water and molecular hydrogen 
in the course of C 0 2 reduction. A mechanism is proposed as a possible explanation for the data obtained 
involving conjugated reactions of C 0 2-reduction and enzymatic reduction of water.
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INTRODUCTION

D uring the last decade, an increasing num ber o f 
studies have been carried ou t on m ethane form ation , 
m igration and occurrences. A better understanding 
and characterization  o f the m echanism s leading to 
bactcrial o r therm ogenic m ethane production has 
indeed proved to be o f great interest in hydrocarbon 
exploration  (Fuex, 1977).

Rosenfeld and Silverm an (1959) first showed that 
an im portan t carbon  isotope fractionation  occurs 
when m ethane is produced by m icrobial processes 
from  m ethanol. C arbon  isotope com position o f 
m ethane has since been widely used in field studies to 
distinguish between therm al and biogenic gas, the 
la tter being m ore enriched in l2C (C olom bo et al., 
1964; G alim ov, 1973; C laypool et al., 1983). In 
addition , experim ents with pure bacteria cultures 
were perform ed to further investigate isotope frac­
tionations through  m ethane production  by different 
m ethanogen species grow ing at different tem ­
peratures and with different substrates (G am es and 
H ayes, 1976; Fuchs et al., 1979).

A com bination  o f  С and H isotope com position 
analyses was later used to investigate m echanism s 
after m icrobial oxidation  o f m ethane was shown to 
enrich the residual m ethane in ,3C with carbon iso­
tope com position  approaching  tha t o f therm ogenic 
gas (C olem an et a i % 1981; B arker and Fritz, 1981).

W orks on hydrogen isotope com position o f m eth­
ane, in addition  to therm al vs microbial gas d is­
tinction, dealt with different pathw ays for biogenic 
gas p roduction  nam ely C 0 2 reduction and acetate

ferm entation  (Schoell, 1980, 1983; W oltem ate et al 
1984; W hiticar et a l 1986). D ifferent pathw ays for 
m ethane production  involve different sources for 
m ethane hydrogen which may lead to characteristic 
correlations between the hydrogen isotope com ­
position o f m ethane and that o f the fo rm ation  water.

There is, however, no data  in the literature On the 
isotope fractionation  between m olecular hydrogen, 
which is believed to act as an electron d o no r during 
m icrobiological reduction o f C 0 2 (A bram  and 
N edwell, 1978; Bryant, 1979) and m ethane. This lack 
o f  da ta  may be explained by the very low 
concen tration  o f H 2 present in the natural 
m ethanogenesis areas (M ah et al.y 1977).

We present in this paper hydrogen and carbon  
isotopic d a ta  o f products and reactan ts as they 
change during m ethane production  under controlled 
labora to ry  conditions by M ethanobaeterium f o r - 
m icicum , a m esophilic au to troph  m ethanogen that 
utilizes H : /C 0 2 in strict anaeroby as an energy and 
carbon  source for grow th. The experim ent described 
was designed to identify the hydrogen source during 
m ethane generation. F or this purpose, w ater o f a 
different isotope com position was used in parallel 
experim ents.

EXPERIM ENTAL

Culture o f  methanogens

Pure cultures o f M ethanobaeterium form icicum  was 
supplied by Professor R. S. W olfe (D epartm ent o f 
M icrobiology, U rbana, University o f Illinois). The
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cultu ies were perform ed in the Biotechnologie- 
E nvironnem ent L aboratory  of Institu t F ra r^a is  du 
Petrole.

Basal m edium  that was used for grow th and for 
m aintenance o f stock cultures o f M . form icicum  was 
identical to  medium 1 described by Balch ei al. 
(1979). M edia p reparation  was perform ed according 
to the specifications o f Balch and  Wolfe (1976). 
A naerobic medium was prepared by boiling the 
com plete m edium  lacking cysteine and sulfide under 
a stream  o f N 2:C 0 2 (80:20) gas. Cysteine was then 
added, the flask was stoppered, and the m edium  was 
dispensed in an anaerobic hood, 5 m l/tube (Bellco 
G lass, Inc., Vineland, N.S.). Before autoclaving, the 
gas phase in each tube was exchanged for the sub­
strate, hydrogen-'Carbon dioxide, by m eans o f  gasing 
m anifold (Balch and W olfe, 1976). The volum e o f the 
gas phase was 23 cm 3. Just before inoculation , 0.1 ml 
o f sterile 2.5%  N a2S -9 H 20  was added to each tube 
o f the m edium. Cultures were grow n for 3 days at 
34°C w ithout shaking under a pressurized a tm os­
phere (3 atm ) containing H 2 and C 0 2 in p roportion  
80:20. M ethane production  was routinely used for 
the m easurem ent o f growth.

Five sets o f cultures were p repared according to 
this procedure, inoculated with Л/. form icicum  and 
supplied with aliquots o f the same initial H 2/C O : gas 
m ixture. The culture medium o f each set was pre­
pared with w ater o f different isotopic com position by 
mixing in different am ounts o f D 20 .  Sets А, В, С and 
D are com posed o f 4 cultured tubes each and set E 
o f 2 cultured tubes.

In addition , five references were prepared  consist­
ing o f a H 2/C 0 2 gas mixture and an aliquot o f w ater 
media.

I t o p i c  analysts

Initial C 0 2, H 2 and water used in the experim ents 
were analyzed for their deuterium  and c a rb o n -13 
contents. In the culture tubes, isotope analyses 
were perform ed on residual C 0 2 and H : , the 
w ater m edium , the m ethane as well as the cell 
m aterial.

These analyses were carried out on a 602D siamese 
VG M icrom ass spectrom eter. The isotopic com ­
position is reported in the usual <513C and (5D no­
tation  in per mil relative to PDB and SM O W  stan ­
dards respectively.

G as phase com pounds (C 0 2/H 2/C H 4) separation  
and m ethane oxidation: we have developed a 
technique for quantitative separation  and isotopic 
analysis o f C H 4/H 2/C 0 2 gas m ixtures, using gas 
ch rom atography  separation principles. The p ro ­
cedure is as follows: the gas m ixture contained in the 
cultured  tubes is adm itted into a vacuum  line through 
a m icrosyringe. It is allowed to pass first through a 
trap  cooled down to dry-ice tem perature (where 
w ater vapor is retained) and then th rough  a glass-coil 
tubing a t liquid nitrogen tem perature where the total 
am oun t o f C 0 2 and part o f the C H 4 is trapped. A

glass tube filled with silica gel at liquid nitrogen 
tem perature (previously degassed at 250CC) acts like 
a pum p on the C H 4/H 2 mixture. After 20 min, separ­
ation  is com pleted between C O : (ready for mass 
spectrom eter analysis) and C H 4 +  H : . Partial release 
o f H 2 is achieved by bringing the silica gel tube to 
freezing pentane tem perature  (% — 120°C). An ali­
quot o f the H 2 released is used for isotope analysis, 
the rem aining H 2 being pum ped away. M ethane is 
then released by bringing silica gel to room  tem ­
perature, and converted to C 0 2 and H :0  by passing 
over copper oxide a t 800CC. The e.o lved  C O , is used 
for δ ,3C analysis o f m ethane and the water is reduced 
to H 2 as is described below.

Hydrogen isotope fractionation  during separation 
o f H 2 by the technique used was found to be negli­
gible for our purposes. A detailed report on isotopic 
and quantita tive d a ta  for H 2 separation  following this 
procedure is given in B alabane and Letolle (1986).

Overall reproducibility for values obtained with 
this procedure is ±1%«<5,3C (C O : and C H 4) and 
±4%«<5 D (H 2 and С Н Д

Once the gas phase is rem oved, the cells are 
harvested by centrifugation  and rinsed twice. The 
w ater is reduced on ho t uranium  (Bigeleisen et al 
1952). W ater is in troduced as a vapor into the 
reduction system, which prevents m ost dissolved un­
know n organic species from interfering with the 
isotopic com position o f w ater. The hydrogen evolved 
is recovered through the interm ediate form ation o f 
uranium  hydride (F riedm an and H ardcastle, 1970) 
and analyzed for relative D content. The cell m aterial 
is dried (48 hr pum ping a t 50°C through liquid n itro ­
gen trap) before com bustion  in an 0 2 atm osphere to 
C 0 2 and H 20 .  W ater is then reduced to H 2. S tandard  
deviation is ±l%o<5D (water), ±2% o£D  and 
± 0 . 1 <5I3C (cell m aterial).

RESULTS AND DICUSSION

The isotopic com positions o f products and reac­
tants, as well as the am oun t o f m ethane produced are 
listed in Table 1.

Carbon isotopes

The С isotope com position  o f initial C 0 2 as 
m easured in the reference tubes is — 30%o. Residual 
gas analyzed after reaction  in the cultured tubes is 
enriched in ,3C(<5l3C =  — 5 to +9%o). Progressive 
enrichm ent in 13C o f the residual C 0 2 reservoir is due 
to preferential up take o f  l2C by the bacteria in the 
course o f cell m aterial building and  C H 4 production  
(<5l3C cells =  —33 to -35% o; <5,3C C H 4 = - 4 2  to 
— 51%o).

Isotope fractionation  canno t be accurately calcu­
lated because o f lack o f  da ta  on the relative carbon  
distribu tion  between C 0 2, C H 4 and cell m aterial.

Figure 1 shows the difference in С isotope com ­
position between C H 4 and C 0 2 (Л С Н 4~ С 0 2 »  48%o).



I! and С isotope fractionation 

Tabic 1. Isotopic data for methane production by M . formicicum
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Set

<5 ;H%e (SMOW) c5l3C%o (PDB)
CH 4 yield 

(mmol)h 2o H; Cells,,) C H 4 П
 

i
P Cells,J) C H 4

A Ref. - 4 3 -6 4 7
Cult. — 44 -7 5 3 -441

— 42 -7 4 8 -4 5 2 (1)
- 4 2 -7 4 8 (2) -451
- 4 0 -7 4 6 -4 5 6

В Ref. - 9 -6 5 3 -2 8 .4
Cult. - 1 6 -388 - 4  2 -4 7 .9 005

-2 1 -3 9 2 + 0.2 -4 8 .2 0.08
- 1 8 -7 4 7 -1 1 5 -3 8 6 - 4  4 -3 5 .5 - 5 0  6 0.05
- 2 3 -7 3 8 -3 9 6 + 5.8 -4 4 .5 0.09

С Ref + 55 -6 5 5 -3 0 .9
Cult. 4-46 -3 7 5 + 2.5 -4 5 .3 0.13

+  39 -7 2 8 -3 8 5 -4 4 .8 0.20
+ 39 -9 2 -3 7 7 + 8.9 - 3 3  2 -4 3 .4 0.20
+ 46 -7 2 5 + 0 3 -4 5 .0 0.32

D Ref. +  132 -6 5 4 - 3 0  6
Cult. +  121 -7 1 2 -3 2 5 -2 .1 -4 9 .7 0.05

+ 117 -7 0 8 -331 -4 2 .7 0.27
+ 111 -6 9 9 - 7 3 -3 1 8 + 0.3 -3 4 .4 -4 5 .5 0.13
+  110 — 711 -3 2 3 -4 3 .7 0.32

E Ref. +  208 -6 5 6 -31 .1
Cult. +  189 -6 9 4 (2) -2 7 6 + 0.4 (2) -4 7 .6 0.22

+  187 -6 9 8 -2 7 9 + 3.6 -4 5 .8 0.10

Ref. =  reference tubes containing initial C 0 2 + H 2 gas mixture and water medium. Cult. = cultured tubes containing 
residual CO: + H 2, water medium, cell material and methane. (1) In set A, the am ount of C 0 2 supplied was 
too small which led to total consumption of COj and a small yield of cell material. (2) Insufficient amount 
of cell material for ieotopic analysis. (3) Isotopic composition is performed on the cell material harvested in 
the four culture tube* and mixed together ая to obtain required organic m atter am ount· for combuition.

Isotopic com positions are p lo tted  vs the m ethane 
yield which corresponds to a certain  degree to the 
advancem ent o f the process.

O ur experim ental d a ta  are com pared with data  
obtained  in natural conditions by G alim ov and 
K venvolden (1983) for coexisting C H 4 and CO, in the 
deep-sea sediments. (513C 0 2 changed from % — 24%o 
in subsurface sedim ents ( T  =  2 -4°С ) to % —4%o at

depths o f 350-400 m ( Г =  15-19°C), Changes in С 
isotope com position o f coexisting m ethane are from  
% — 90%o to  % -66% o.

Д С Н 4- С 0 2 observed at the depth 350-400 m and 
shown on Fig. 1 is larger than that observed in the 
experim ent. This may be due, however, to higher 
tem perature  (34°C) m aintained during the experi­
ment. W ith the appropriate  corrections (see footnote
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Fig. 1. Comparison of difference in С isotope composition between CH4 and C 0 2 (ЛСН4-С 0 2) derived 
from our measured data (A) and ДСН4-С 0 2 measured by Galimov and Kvenvolden (1983) in sediments 
of the Blake Outer Ridge, DSDP Leg 76, at a depth of 350-400 m (В: И <5nCc<>,; □  <5,30 „ 4). *A 
correction of about 9%o is applied to account for the difference between the temperature at the 350-400 m 
depth in field conditions (^17°C ) and the temperature of the experiment (~ 3 4 X ). This correction is 
derived from the ЛСН4- С 0 2 obtained by Galimov and Kvenvolden in subsurface (T  ^  2°C;

ЛСН4- С 0 2 69%o) and at 350-400 m ( Г -  17°C; ЛСН4- С 0 2 ^  60%o).
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in Fig. 1), one can conclude that isotope fractionation  
during experim ental m icrobial reduction o f C 0 2 co r­
responds fairly well to the values recorded in natural 
condition. This is further evidence that C O : reduction 
is an im portan t m echanism  of microbial generation 
o f m ethane in deep m arine sediments.

Hydrogen isotopes

The initial isotope com positions of water and 
m olecular hydrogen are those m easured in the refer­
ence tubes, i.e. before inoculation with \ f .  f o r ­
micicum. The results in Table 1 show relative deu­
terium concentration  o f the w ater provided for each 
set o f experim ents (from  — 43 to +  208 <5 D%o) and the 
isotope com position o f the m olecular hydrogen 
which rem ains unchanged ( % —653 <$D%o) from one 
set to another. It is im portan t to note that, in the 
reference tubes, the isotope com position of H 2 is not 
affected by the different deuterium  concentrations o f 
the w ater which m eans that no contam ination  hap ­
pens in the course o f the experim ental procedure 
described above for com pounds separation, or iso­
tope exchange occurs between both com pounds upon 
preparation  o f the culture m edium  before inocu­
lation.

In the cultured tubes, the isotopic com position o f 
w ater show slightly lower <5D-values in com parison 
with w ater in the reference tubes. This is due to the 
addition, in the course o f inoculation, o f about 0.3 ml 
o f w ater with <5D =  —45%o (tap water) to the initial 
w ater medium (o f abou t 5 ml).

<5D o f the m ethane is independent o f the am oun t 
o f m ethane produced contrary  to what is observed 
for carbon-13 m ethane com position (Fig. 1). A p ara l­
lel observation was m ade by Fuchs et al. (1979) who 
found <513C o f А/. thermoautotrophicum  cell organic 
m aterial as well as that o f the m ethane produced to 
be dependent on the gassing rate o f C 0 2/H 2 supply 
whereas <5D o f the cells was independent o f the 
gassing rate.

In Fig. 2, the isotopic com position of m ethane, 
m olecular hydrogen and cell organic m aterial is p lo t­
ted relative to tha t o f the w ater medium for the 
corresponding set o f experiments. All o f the com ­
ponents exhibit a dependence on the isotopic com ­
position o f the water. The systems H 20 — C H 4, 
H 20 — H 2 and H 2— C H 4 are not in isotopic equi­
librium. This is inferred from com parison between 
fractionation  factors calculated from our m easured 
values and those calculated by Bottinga (1969) for 
systems in equilibrium . D ifferent isotopic com ­
position o f m ethane in the different sets o f the 
experim ent indicates involvement o f water hydrogen 
into m ethane form ation as already settled by many 
au thors (N akai et a l 1974; Schoell, 1980; D aniels et 
al., 1980). The new finding that evolves from our 
experim ents is that the isotopic com position o f w ater 
affects tha t o f the m olecular hydrogen. This means 
tha t there is, in the course o f methanogenesis process, 
an isotope exchange between w ater and m olecular

hydrogen, i.e. m icrobiological consum ption  o f molec­
ular hydrogen is not an irreversible process as is 
believed.

To account for the observed interdependence o f 
L>drogen isotope com position o f water, m olecular 
hydrogen and m ethane, a m echanism  may be p ro ­
posed where C O :-reduction would include some kind 
o f enzym atic reduction o f w ater with pro tons being 
transferred into the m ethane form ation  chain. A 
conjugated pair o f the reactions may be proposed to 
explain the mechanism , for example:

R—C H O  +  H 20  -  H 2 +  R— C O O H

}с о 2 +  Н ; - ! н :о  +  }с н 4

One explanation  for the observed dependence o f 
<5DHj on <5Dwiler would be mixing o f intracellular H 2 
o f  the biochem ical reactions with outside 
H>-reservoir.

CONCLUSION

Production  o f m ethane via the C 0 2-reduction

Fig. 2. Variations in the deuterium relative content of 
residual H: , methane and cell material as related to the 
isotopic composition of the water medium in sets А, В, C,

D and E (O . #  D . II, +  ).
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pathw ay was perform ed by pure culturc o f M e th ­
anobacterium formicicum, The С and H isotope com ­
position o f com pounds was m easured before reaction 
(initial substrate) and after reaction (residual sub­
strates and m ethane produced). C om ponents were 
separated by a new m ethod described allowing 
a satisfactory precision for isotopic com position 
analyses.

The hydrogen isotope com position of all the hy­
drogenated com pounds o f the medium (H : , cell 
organic m aterial and C H 4) shows dependence on the 
S D o f water, This agrees with previous w orks for 
t D C]{4-J O „ » 'T dependence describing involvement o f 
w ater hydrogen into m ethane form ation. O ur results 
show tha t the residual H 2 reservoir isotope com ­
position is affected by <5D of the w ater medium . 
H ydrogen exchange between w ater and H 2 in the 
course o f m ethane production  may be inferred d i­
rectly from  the data obtained. C onjugated reactions 
o f C 0 2-reduction and enzym atic reduction o f w ater 
with p ro ton  being transferred into the m ethane fo r­
m ation chain are proposed as a possible explanation  
for the experim entally observed data.

The С isotope com position o f residual C 0 2 and 
coexisting C H 4 shows a fairly good correspondence 
with field d a ta  for deep m arine sediments.
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